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Abstract
The most physically interesting systems are not exactly solvable in quantum
mechanics. For one-dimensional bound systems without exact solutions, we
analytically and numerically find that the Rayleigh–Schrödinger perturbed
series sensitively depends on an unsolvable integration, which leads to
numerical instability in quantum mechanics. By using an exact formal solution
of the non-homogeneous Schrödinger equation, we demonstrate the existence
of analytically bound states and propose a simple scheme to truncate infinity
so that the instability difficulty is avoided.

PACS numbers: 0365G, 0365B, 0230

It is well known that the fundamental equation of quantum mechanics is the Schrödinger
equation, which has no exact solutions for the most physically interesting systems [1, 2].
Therefore, approximation methods are unavoidable in analytical studies of these systems. If a
system differs from an exactly solvable system by only a small perturbation, one expects that
Rayleigh–Schrödinger expansion [3–5] in powers of a small parameter could give perturbation
corrections of the physical quantities. Unfortunately, the Rayleigh series diverges for the most
practically perturbed potentials in the previous quantum theory [6–10]. Commonly, only the
first-order perturbation result is rational and the higher-order results contain non-physical
infinity. Although some improved perturbation techniques have been presented [11–13],
convergent wavefunctions have not been included in previous works. Divergence difficulties
have caused doubt in the mathematical foundations of the theory in the minds of many
physicists. Dirac, among other distinguished physicists, even inferred that the fundamental
equation was incorrect and suggested a radical review on the subject [14]. On the other
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hand, Heisenberg pointed out that the numerical orbits of many nonlinear systems that display
numerical instability are ultimately unbounded [15].

Recently, we suggested a different theory for treating quantum perturbation [16–19].
Applying this theoretical method to perturbed Schrödinger systems we have avoided the
divergence difficulties of non-relativistic quantum mechanics. In this Letter we will apply this
method to the Rayleigh–Schrödinger series for a one-dimensional quantum system without
an exact solution. We find that some corrected wavefunctions are analytically bounded but
numerically unbounded, i.e. numerically unstable. The instability comes from the sensitive
dependence of the numerical solutions on some unsolvable integrations. We will propose a
simple scheme to truncate infinity and obtain the correct numerical results.

For simplicity we only consider the one-dimensional stationary and perturbed Schrödinger
equation [1–3]

1
2ψxx − [V (x)− E]ψ = H ′(x)ψ |H ′(x)| � |V (x)| (1)

where ψ(x) and E are the wavefunction and energy of the system, V (x) is the potential
of an exactly solvable system and H ′(x) the additional perturbed potential which leads to
insolubility. Here and throughout the Letter we adopt atomic units such that h̄ = µ = e = 1.
Setting two fundamental solutions of the solvable system as ψ(0)

k and using Refs [16,17] gives

ψ̃
(0)
k = ψ

(0)
k

∫
(ψ

(0)
k )−2 dx (2)

where ψ(0)
k (x) is a bound state solution of the unperturbed Schrödinger equation with the

boundary conditions ψ(0)
k (±∞) = ψ

(0)
k,x(±∞) = 0. Then applying the l’Hospital rule to

equation (2) we derive the limit

lim
t→±∞ |ψ̃(0)

k | = lim
t→±∞ |ψ(0)

k,x |−1 = ∞ for lim
t→±∞ψ

(0)
k = lim

t→±∞ψ
(0)
k,x = 0. (3)

The unbounded ψ̃(0)
k does not represent any physical state, but it is useful for constructing the

exact formal solutions of the non-homogeneous Schrödinger equations.
The well known Rayleigh–Schrödinger perturbation expansions read

ψ =
∞∑
i=0

λiψ
(i)
k E =

∞∑
i=0

λiE
(i)
k for H ′(x) = λW(x) |λ| � 1 (4)

with λ being a small dimensionless parameter. Substituting equations (4) into (1) and equating
the coefficients of each power of λ for both sides yields the set of equations

1
2ψ

(i)
k,xx − [V (x)− E

(0)
k ]ψ(i)

k = ε
(i)
k i = 0, 1, 2, . . . ,∞

ε
(0)
k = 0 ε

(i)
k = W(x)ψ

(i−1)
k −

i∑
j=1

E
(j)

k ψ
(i−j)
k i = 1, 2, . . . ,∞.

(5)

For sufficiently smallλ the Rayleigh series in equation (4) should be convergent, if the solutions
ψ
(i)
k of equation (5) are bounded. Obviously, equation (5) is a set of non-homogeneous

Schrödinger equations with the non-homogeneous terms ε(i)k (x). Knowing the solutions ψ(0)
k

and ψ̃(0)
k of the corresponding homogeneous equations, the constant variation method gives

the formal general solution [16–19]

ψ
(i)
k = 2ψ̃(0)

k

(
A
(i)
k +

∫ x

−∞
ψ
(0)
k ε

(i)
k dx

)
− 2ψ(0)

k

(
B
(i)
k +

∫ x

0
ψ̃
(0)
k ε

(i)
k dx

)
(6)

of equation (5) for i = 1, 2, . . . , where A(i)k and B(i)k are arbitrary constants adjusted by the
boundary conditions and normalization. These exact general solutions contain all of the special
solutions, the bounded and unbounded, which are determined by the constants A(i)k and B(i)k .
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The unbounded function ψ̃(0)
k indicates the existence of infinity in equation (6) at the infinite

boundaries and makes no sense of the corrected wavefunctions in equation (6). However,
application of the l’Hospital rule can readily prove that these corrections vanish as x → ±∞
if and only if the boundary conditions

I
(i)
± = lim

x→±∞

[
A
(i)
k +

∫ x

−∞
ψ
(0)
k ε

(i)
k dx

]
= 0 i = 1, 2, . . . ,∞ (7)

are satisfied. Under the conditions using l’Hospital rule and equations (3)–(6) yields the limit

lim
x→±∞ψ

(i)
k = 2 lim

x→±∞

[
ψ
(0)
k ε

(i)
k

[(ψ̃(0)
k )−1]x

− ψ̃
(0)
k ε

(i)
k

[(ψ(0)
k )−1]x

]

= 2 lim
x→±∞

[
(ψ

(0)
k )2ψ̃

(0)
k ε

(i)
k

ψ
(0)
k,x

− (ψ̃
(0)
k )2ψ

(0)
k ε

(i)
k

ψ̃
(0)
k,x

]

= 2 lim
x→±∞

[
ψ
(0)
k ψ̃

(0)
k ε

(i)
k

ψ̃
(0)
k,xψ

(0)
k,x

[ψ(0)
k ψ̃

(0)
k,x − ψ̃

(0)
k ψ

(0)
k,x]

]

= 2 lim
x→±∞

[
ψ
(0)
k ψ̃

(0)
k ε

(i)
k

ψ̃
(0)
k,xψ

(0)
k,x

]

= 2 lim
x→±∞

[
ψ
(0)
k ψ̃

(0)
k,xε

(i)
k + ψ̃(0)

k ψ
(0)
k,xε

(i)
k

ψ̃
(0)
k,xψ

(0)
k,xx + ψ̃(0)

k,xxψ
(0)
k,x

]

= lim
x→±∞

[
ε
(i)
k

V (x)− E
(0)
k

]

= lim
x→±∞

i∑
j=1

a
(j)

k (x)ψ
(i−j)
k (8)

where

a
(1)
k = H ′(x)− E

(1)
k

V (x)− E
(0)
k

a
(j)

k = −E(j)k
V (x)− E

(0)
k

for j = 2, 3, . . . ,∞. Given equations (8) and (3), we can check the boundedness of ψ(i)
k . For

example, equation (8) gives limx→±∞ ψ
(1)
k being proportional to limx→±∞ ψ

(0)
k , limx→±∞ ψ

(2)
k

proportional to limx→±∞ ψ
(1)
k and so on. It is apparent that for the most physically interesting

potentials and perturbations the ith-order corrected wavefunctions vanish as x → ±∞, since
limx→±∞ ψ

(0)
k = 0. Thus we have proved the sufficiency of equation (7). In the calculation

for the limit only the first term on the right-hand side of equation (6) depends on condition (7).
Without equation (7), this term will tend to infinity as x → ±∞. This is the proof for the
necessity of the conditions. From the condition at x → −∞ we have the constants A(i)k = 0
for i = 1, 2, . . . . Given A(i)k , the normalization condition can be expanded as the first-order
condition

0 =
∫ ∞

−∞
ψ
(0)
k ψ

(1)
k dx

= 2
∫ ∞

−∞
ψ
(0)
k

[
ψ̃
(0)
k

∫ x

−∞
ψ
(0)
k ε

(1)
k dx − ψ

(0)
k

(
B
(1)
k +

∫ x

0
ψ̃
(0)
k ε

(1)
k dx

)]
dx (9)

and the second-order condition

0 =
∫ ∞

−∞
[2ψ(0)

k ψ
(2)
k + (ψ(1)

k )2] dx = 4
∫ ∞

−∞
ψ
(0)
k

[
ψ̃
(0)
k

∫ x

−∞
ψ
(0)
k ε

(2)
k dx
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−ψ(0)
k

(
B
(2)
k +

∫ x

0
ψ̃
(0)
k ε

(2)
k dx

)]
dx +

∫ ∞

−∞
(ψ

(1)
k )2 dx (10)

and so on. The constants B(1)k and B(2)k are given by equations (9) and (10). According to the
theory of differential equations, the general solution ψ(i)

k contains all the special solutions of
the ith-order equation. Any special solution must satisfy boundary condition (7) of the general
solution. For an unsolvable system solution (6) includes some integrations, which cannot be
expressed in finite terms of elementary functions. Therefore the integral solution is the final
analytical form of the corrected wavefunction. Inserting the third part of equation (5) into (7),
from I

(i)
+ − I

(i)
− = 0 we obtain the formula of any ith-order energy correction

E
(i)
k =

∫ ∞

−∞
ψ
(0)
k

[
W(x)ψ

(i−1)
k −

i−1∑
j=1

E
(j)

k ψ
(i−j)
k

]
dx i = 1, 2, . . . ,∞. (11)

This gives the first-order energy correction to be the expectation value of W(x) in the
unperturbed state that completely agrees with the common first-order result [1]. Moreover, the
above method does not produce any divergence in the analytical results, since conditions (7)
and (11) have successfully suppressed infinity in solution (6).

However, the exact and formal general solution (6) of the non-homogeneous Schrödinger
equation (5) contains a product between the unbounded function ψ̃(0)

k and an integration,
which cannot always be expressed as a finite form of elementary functions. In numerical
computation from equation (6), some small deviations from the unsolvable integration are
unavoidable. The different deviations may come from the use of different numerical integration
methods and different integration steps, as well as different precisions for the representation
of real numbers in the computer. Any infinitesimal deviation will break the boundedness
condition (7) and will be amplified by the unbounded function until infinity as x → ±∞.
Thus we theoretically demonstrate that the corrected wavefunction (6) is analytically bounded
but numerically unbounded. This could lead to numerical instability.

Numerical unboundedness is irrational because of its violation of the strict analytical
solution (6) under boundedness conditions (7) and (11). In order to use the numerical method
in investigating perturbed quantum systems, we must provide a scheme to get rid of this
numerical infinity. From equation (8) we find that the ith-order corrected wavefunction ψ(i)

k

is proportional to the unperturbed one ψ(0)
k as x → ±∞. Ordinarily, the latter exponentially

decreases as the spatial coordinate increases and vanishes at x = ±∞. Therefore, if a corrected
solution ψ(i)

k exponentially tends to zero at the point x0, we certainly have ψ(i)
k (x) < ψ

(i)
k (x0)

for all of |x| > |x0|. The infinity appearing in the numerical results for |x| > |x0| comes from
the numerical instability, which should thus be truncated.

Let us take the perturbed reflectionless potential [20,21] and the anharmonic oscillator [22]
as two simple examples that exhibit these details. The former contains numerical infinity in the
first-order perturbed correction. The first perturbed equation is solvable and the second-order
correction leads to numerical infinity for the latter.

The reflectionless potential is an exactly solvable quantum system for which some strict
solutions have been found [20, 21]. However, this solvability could be easily broken by a
periodic perturbation. For the periodically perturbed reflectionless potential, the solvable and
perturbed potentials are, respectively

V (x) = −sech2x H ′(x) = λW(x) W(x) = � sin (kx + θ) |λ| � 1 (12)

where the periodic term describes a standing laser field with � being the Rabi frequency and
k and θ the wavevector and initial phase, respectively. We consider the simplest ground state
to have energy E(0) = −1/2. Substituting it and equation (12) into (5) and (2) yields the
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unperturbed solutions and first-order perturbed function

ψ(0) = 1√
2

sech x ψ̃(0) = 1√
2
(sinh x + xsech x) (13)

ψ(1) = 2ψ̃(0)
∫ x

−∞
ψ(0)ε(1)(x) dx − 2ψ(0)

[
B(1) +

∫ x

−∞
ψ̃(0)ε(1)(x) dx

]

ε(1) = 1√
2

[� sin (kx + θ)− E(1)]sech x.
(14)

Applying equations (12) and (13) to (11) gives the energy correction

E(1) = 1

2
πk� sin θ csch

(π
2
k
)
. (15)

We select the parameter set k = 4, � = 1 and θ = π/2 and insert them into equations (9)
and (15), producing the constant B(1) and energy correction E(1) as

B(1) = 0.087 2548 E(1) = 2πcsch (2π). (16)

Combining these with equation (6) gives the explicit form of the first-order wavefunction

ψ(1) = 1√
2
(sinh x + xsech x)

∫ x

−∞
sech2x[cos (4x)− 2πcsch (2π)] dx

− 1√
2

sech x

[
B(1) +

∫ x

0
(tanh x + xsech2x)[cos (4x)− 2πcsch (2π)] dx

]
.

(17)

Clearly, the first term in equation (17) has the form 0 × ∞ at |x| equating to infinity.
Applying the l’Hospital rule to this term we can easily prove its boundedness. But the
insolvability of the first integration could produce a deviation to the exact value. Particularly,
the irrational numberπ with its infinite sequence of digits is contained in the integrand and thus
cannot precisely take a value in the numerical computation. Any infinitesimal deviation from
the precise value can be exponentially amplified by the unbounded function ψ̃(0) to infinity
as |x| tends to infinity. This turns the analytically bounded wavefunction into a numerically
unbounded one.

We used ‘mathematica’ to numerically show the spatial evolution of the first-order
solution (17) in figure 1, which includes infinity in the interval x < −30 and x > 10. Adding
the correction to the unperturbed wavefunction ψ(0), we plot the total solution ψ(0) + λψ(1)

for λ = 0.1 in figure 2(a). In figure 1 we see that the periodical perturbation makes the
numerical solution periodically increase and decrease for small |x|. When |x| approaches
10, it non-periodically tends to zero. The latter decrease is caused by the exponentially
decreasing function ψ(0). Therefore, infinity for |x| > 10 results from computational
instability. Truncating infinity and letting the wavefunction vanish for |x| > 10, we obtain the
correct numerical solution as shown in figure 2(b). In further computations for the second-
order correction, we must use the correct solution without infinity. Figure 1 shows ψ(1) being
in the order of 10−1 so that λψ(1) is in the order of 10−2. This infers there is no distinct
difference between the solution in figure 2(b) and the unperturbed solution. In all figures all
values are given in atomic units.

Another interesting system is the anharmonic oscillator that was often used for illustrating
the divergence difficulties in quantum mechanics [12] and the quantum field [22]. In these
cases the solvable potential and the perturbed potential are, respectively

V (x) = x2/2 H ′(x) = λW(x) W(x) = x4 |λ| � 1. (18)
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Figure 1. A plot of the space evolution of the first-order corrected wavefunction from equation (17)
for the periodically perturbed reflectionless potential. Here and in all other figures all values are
given in atomic units.
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Figure 2. Plots of the space evolution of the periodically perturbed reflectionless potential for (a) the
total wavefunction up to first-order correction and (b) the correct wavefunction after truncating
numerical infinity.

Consider the unperturbed ground state with quantum number n = 0. The unperturbed
wavefunction and the corresponding unbounded solution (2) then read

ψ
(0)
0 = π−1/4e−x2/2 ψ̃

(0)
0 = 1

2π
3/4e−x2/2Erfi(x) (19)

where Erfi(x) denotes the imaginary error function. Applying equations (18) and (19)
to (11) yields the first-order energy correction E(1)0 = 3/4. Furthermore, inserting them
into equations (9) and (5) gives the first-order normalization constant B(1)0 = −0.281 25
numerically and the first-order perturbed function ε(1)0 = π−1/4e−x2/2(x4 − 3/4) analytically.
Therefore, from equations (6) and (19) the first-order corrected wavefunction becomes

ψ
(1)
0 = π1/4e−x2/2

[
Erfi(x)

∫ x

−∞
e−x2

(x4 − 3
4 ) dx −

∫ x

0
e−x2

Erfi(x)

(
x4 − 3

4

)
dx − 2

B
(1)
0√
π

]

= − π−1/4e−x2/2[2B(1)0 + 1
4x

2(3 + x2)]. (20)

Here numerical infinity does not exist since the integration multiplied by the unbounded
function Erfi(x) is solvable. Applying equations (19) and (20) to (11) and noting that
equation (9) produces the second-order energy correction gives

E
(2)
0 =

∫ ∞

−∞
ψ
(0)
0 x4ψ

(1)
0 dx = −(2.658 68B(1)0 + 5.400 45)/

√
π. (21)
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Figure 3. Plot of the space evolution of the anharmonic oscillator for the numerically unbounded
second-order correction of the wavefunction in equations (19), (20), (22) and (23).

Setting λ = 0.1, up to second order the total energy reads E0 = E
(0)
0 + λE(1)0 + λ2E

(2)
0 =

1/2 + 0.1 × 3/4 − 0.01 × (2.658 68B(1)0 + 5.400 45)/
√
π ≈ 0.548 75. Given equations (20)

and (21), from equations (5) and (10) we have, respectively, the second-order perturbed function
and normalization constant

ε
(2)
0 = (H ′ − E

(1)
0 )ψ

(1)
0 − E

(2)
0 ψ

(0)
0 =

(
x4 − 3

4

)
ψ
(1)
0 +

(2.658 68B(1)0 + 5.400 45)√
π

ψ
(0)
0

B
(2)
0 = 1.522 46 for B

(1)
0 = −0.281 25.

(22)

Substitution of equations (19), (20) and (22) into (6) for i = 2 readily gives the integral form
of the second-order corrected wavefunction

ψ
(2)
0 = 2ψ̃(0)

0

∫ x

−∞
ψ
(0)
0 ε

(2)
0 dx − 2ψ(0)

0

[
B
(2)
0 +

∫ x

0
ψ̃
(0)
0 ε

(2)
0 dx

]

= 2ψ̃(0)
0

∫ x

−∞
ψ
(0)
0

[(
x4 − 3

4

)
ψ
(1)
0 +

(2.658 68B(1)0 + 5.400 45)√
π

ψ
(0)
0

]
dx

−2ψ(0)
0

[
B
(2)
0 +

∫ x

0
ψ̃
(0)
0

(
(x4 − 3

4 )ψ
(1)
0 +

(2.658 68B(1)0 + 5.400 45)√
π

ψ
(0)
0

)
dx

]
(23)

which includes some unsolvable integrations. Equation (19) shows ψ̃(0)
0 tending to infinity,

and equation (7) gives the first integration in equation (23) as tending to zero as |x| → ∞.
Therefore, the first term of equation (23) possesses the form 0 ×∞ at x = ±∞. Although use
of the l’Hospital rule can easily prove its boundedness, numerical instability could incorrectly
lead to unboundedness.

We can now numerically illustrate the instability of the anharmonic oscillator by figures 3
and 4. In figure 3 we show the space evolution of the second-order correction of the
wavefunction. From the two plots we find that as in figure 1 the second-order solution
exponentially and non-periodically approaches zero at x = ±6 but tends to infinity for |x| > 6.
Therefore we can truncate infinity and let the second-order correction be zero for |x| > 6 so that
the numerical plots correctly describe the analytically bounded solution. In figure 4(a) we plot
the space evolution of the total wavefunction up to second order, ψ0 = ψ

(0)
0 + λψ(1)

0 + λ2ψ
(2)
0

for λ = 0.1. Similarly, infinity exists for |x| > 6 in the plot. Truncating infinity at |x| = 6 and
letting the wavefunction vanish for |x| > 6, figure 4(a) becomes figure 4(b) and agrees with
the analytically bounded solution. Clearly, to avoid infinity we must use the wavefunction
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Figure 4. Plots of the space evolution of the anharmonic oscillator for (a) the total wavefunction
up to second order, ψ0 = ψ

(0)
0 + λψ(1)0 + λ2ψ

(2)
0 for λ = 0.1 and (b) the corrected solution after

truncating numerical infinity.

shown in figure 4(b) in further computations for ith-order (i > 2) corrections of energy and
the wavefunction.

In summary, we have considered analytically unsolvable quantum systems, such as the
periodically perturbed reflectionless potential, the anharmonic oscillator and other physically
interesting systems. We used a different quantum perturbation method to seek the exact
and formal general solution of the corresponding non-homogeneous Schrödinger equation.
Applying this exact formal solution we have analytically and numerically revealed that the
boundedness of the solution sensitively depends on some unsolvable integrations, which lead
to the numerical instability. By proposing a simple scheme to truncate infinity we have avoided
the unboundedness of the numerical results. Although we only give the one-dimensional result
here, the idea on which the numerical instability and the method for truncating numerical
infinity is based can be extended to multi-dimensional and time-dependent cases.

This Letter was supported by the National Natural Science Foundation of China under grant
nos 19874019 and 19734060, and by the Science Foundation of the Hunan Provincial Education
Commission of China.
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